Report No. 8800

ROYAL SIGKALS AND RADAR ESTABLISHMENT 1.
IAALVERN

Il|l

|

|

e
e

|

FORMAL SPECIFICi TiOM 7 &
SECURE DOCUMENT CONTROL SYS FT™ "R SMiE

Author: C L H:;rroui I

LTIC

R -LECTERA

: l

T DISTRIBT o et e | l W
Axsp"‘mUTTON SATIR TEMENT A~ L
‘};’::& for public toloqgagJ I

ution Unhmthd

" |
: I "l
PROCUREMENT Execunve MINISTRY OF DEFENCE

RSRE

Malvem, Worcestershire.

February 1988

| UNLIMITED

)

ROYAL SIGNALS AND RADAR ESTABLISHMENT

REPORT BB@B2

Title: Formal Specification of a Secure Document Control System for S¥I7Z
Auther: C L Harrold
Date: February 1988

SUMMARY

This paper formally describes the requirements for a demonstration cf & secure
electronic registry control svstem (Sercus) to be implemented using the
security attributes of the SMITE secure capability computer.

DTiIC

eopy
NSPECTL N
L

F‘?gs,(,,\ 75]
! NTIS CRagld

1 DI TAR
U iannig e

ozt 'C ""u)

e e e

codl

gy !
Y e]
Dintn H y. ! _Jl
Asalindiny Coitos
e

O N T U3
Dist il ‘
i

A _A

Copyright
©
Controller HMSO London
1888

Contents
1.

Part 1

o~V -+ W

Part 2

11.
12.
13.
14.
15.
16.
17.
18.

18.
20.
21.

Introduction

General Types
Documents and Files,
Other Objects.,
Displays.,

Storing Capabilities,
Users.,

Messages
Journalling

The Journalled Filing System

Journalling Users

Promoting the Operations involving Capab-lities
The Operations upon the Filing System

The Operations upon Cupboards

The Operations upon the Mail Svstem
Promoting the Operations involving the Display
The Operations upon the Display of a User

The Operations Upon Users

Sercus - the Complete System
Summary
References

e

P

1. Introduction

This document formally describes the requirements for a demonstration of a
secure electronic registry control system (Sercus) te be implemented usrg the
security attributes of the SMITE secure capability computer [1.2,3). Tre
formal notation used in this specification is 'Z’, which has been develcped B
the Programming Research Group at Oxford University (41].

Sercus is intended to control the access to, and creation of, class vied
documents and files. In the paper world, all documents and files are centrally
recarded and information as to who has had access to them i1s maintaned.
Sercus will enforce simlar mechanisms. In addition to handling documents a~c
files, users of Sercus will be able to send simple mail messages. -

When users are logged on to Sercus they are presented with = Aienlz dboe
consists of a set of wWindows. All the wndow software wll be completely
trustworthy, but may be used to invoke untrusted software. While untrusted
software is active in @ window the classification of the data is prom~ently
displayed. Sercus will monitor the movement of objects between these wndows,
and correctly maintain the classification levels. . 4

The specification of Sercus is divided into two distinct parts. The first part
specifies the underlying components of the system, such as the documents,
users and displays, and defines the basic operations on them. The second part
shows how these components are combined together and constraints added to the
basic operatiens to create a system that s both functional and secure.

This specification will form the basis of an investigation into techniques for
proving conformance between high level specification and code level
implementation. This is requred to achieve the highest possible levele of
design assurance.

)
|
'
X

Part 1

The following sections describe the various components of Sercus, such sc
documents., files and users. and define the simple operations upon them.

[ot

PP

P S ——— — R v - -

2. Genersl Types

[CLASS 1
There is a given set of classifications. These are used for classifying
objects and giving clearances to users.

There is a relationship, 2. between classifications to indicate domination. This
will be needed when checking whether a user is cleared to see a document. For
example, a user cleared to 'Secret’ will be able to read a 'Restricted’
document, becauvse the classification Secret dominates Restricted. However.,
users cleared to Restricted will not be able to read Secret documents.

{ 2 : partial_orger(CLASS)

- -—

This ordering is partial because not all classifications are
comparable. For example 'Secret UK Eyes Only' neither dominates
nor is dominated by 'Secret US Eyes Only'.

It is useful to define a classification that is dominated by all other possible
classifications.

I bottom : CLASS

I B class : CLASS . class 2 bottom

There is a least upper bound operator between two classifications. This returns
the lowest classification which dominates both of them. For example, a
document that contains both Secret Atomic and Secret Nato information must be
classified to at least 'Secret Atomic Nato'.

lub _ ¢ (CLARSS x CLASS) — CLASS

Y a, b : CLASS .
alubb2sa

alubb2b
g1 :CLASS | 1 2a Al 2b
1 23 lubb

Note that this function is total. This implies that there is one
classification which dominates all other possible classifications.

An operation that takes a set of classifications and returns the lowest
classification that dominates all of them, is also defined.

{ LUB_ : P CLASS -~ CLASS

U set : P CLASS .
Bc: set .
LUB set 2 ¢
1 :CLRSS | Hc:6et « (1 2c) (1 2LUB set)

[STR 3}
There is a given set of character strings. These are intended to represent
printed messages on the screen, such as the current classification. An
operation which takes a classification and returns the string representing it is
defined.

General Types 4

j —_— - T

| show : CLASS = STR

This is a function because there is only one string to represent
each classification. The function is total because 3all
classifications must be representable, and one to one because sll
the strings must be unigue.

([CAPABILITY 1

There is a given set of capabilities for all possible objects. A capability s
universal, unforgable name for an object. Capabilities are the means
refering to objects. Each capability refers to only one object. and there s
only one capability for each object.

a
ot

Capabilities are only distinguishable by the virtue of the objects
they refer to. This means that whenever capabilities are copied it
is impossible to tell them apart as they will refer to the same
object. Hence., the restriction that there is a single capability for
each object in Sercus, and consequently capabilities can be in more
than one place at a time.

[TIME]
Time exists, and a relationship between two times to indicate 'not later tha-' <
defined.

| _<_ : total_order(TIME)

This ordering I1s total since all times are comparable.

The current time wWill always ke avalable in Sercus, although no operations to
update it will actually be defined.

| time_now : TIME

5 General Types

e o i e — -y —— ——— w - - T M

3. Documents and Files

3.1 Introduction

Sercus is intended to control the access to. and creation of, classified
documents and files. and to model some of the mechanisms in use in the paper
world that do this. In the paper world. all documents are centrally recorded
on a Classified Document Register (cdr) and all files on a Filelist. Documents
can be uniquely identified by their cdr number, or if they have been filed. by a
file number and enclosure number. The cdr also records the people who have
seen the document.

For the purposes of specification it is useful to partition the set of all
possible capabilities into three sets.

caps_for_docs : P CAPABILITY
caps_for_files : P CAPABILITY
caps_for_anon : P CAPABILITY

{ caps_for_docs., caps_for_files, caps_for_anon)
partition CAPABILITY

This means that when creating new decuments. for example, it will
not be necessary to check whether the capability you are giving the
document already exists as a file or other capability.

3.2 Documents in Sercus

Documents are unalterable objects which may only be read. They have s
classification bound into them and can be uniquely identified by a cdr number.
The characters that make up the text of a document are uninteresting as far as
specification at this level is concerned. The only interesting property of the
contents of 3 document is that it may contain capabilities for other documents.

Bocuments do not move about the system. but are accessed via
capabilities. Hence, unlike in the paper world the edr will not
record the location of a document, but will record which users have
opened the document (note that simple possession of a capability
does not automatically allow access and consequently it is not
useful to record this fact). This mechanism will be added st a
later date., see journalling in section 9.1 and 10.

[CDR_NUM 1]

There is a given set of cdr numbers that will be used to uniquely identify the
documents. Cdr numbers are ordered, in the paper world on date of crestion,
and an operation to discover this order is defined.

| _2_ : total_order(CDR_NUM)

This ordering is total because all cdr numbers are comparable.

Documents and Files 6

!—-—-!'—_-,—-——"‘—-—m—ﬁww et 'j

DOCUMENT

classification : CLASS
contents : P CAPABILITY
cdr _number : CDR_NUM

contents & caps_for_ducs (1)

J—)

(1) Documents can only contain capabilities for other documents.

mapping between document capabilities and ther associated documertc =
required. Only some of the total set of capabilities for documents refer iz
existing documents, as other capabilities will be reaquired whenever re.
documents are created.

THE _DQCS
which_doc : CAPABILITY »» DOCUMENT vl

—

dom which_doc £ caps_for_docs

Y c: dom which_doc .

which_doc(c }.contents ¢ dom which_doc (2"
¥ i, J : dom which_doc «
which_doc (i).cdr _number = which_doc(j).cdr_number > i = ; (3)

The which_doc function maps the document capabilities to therr documents. The
domain of this function 1s the set of all the document capab:ilities sco fa-
created. Hence the range is the set of all the documents created so far.

(1) This is a functinn hec2use czrozkilities ran crlyy refer to one
document. The function 1s one to one because there i1s opnly ore
capability for each document, and partial because not all the
possible documents have yet been created.

(2} A1l the documents in Sercus may only contain capabilities for other
documents that exist.

(3) Documents are uniquely identifiable by theirr cdr number.

b

ATHE_DOCS 2 [THE_DOCS': THE_DOCS 1
STHE_DOCS a [ATHE_DOCS | 8THE_DOCS' = e8THE_DOCS)

3.3. Files in Sercus

Files in Sercus are not necessary for naming or accessing documents. They a e
simply a convienient grouping of document capahilities. In the paper world filed
documents can be identified by a file and enclosure number. In order to ke able
to do this in Sercus, it is necessary to insist that the document capabilities
may be on at most one file.

Note that although documents caen only be on @ single file., they _zn
ccatain capabilities for documents on other files.

[FTITLE]
All files will have a title, which is taken frem the given set, and is 1tself
classified. Files also have an overall classification, which must dominate the

7 Documents and files

T ————

title classification, and the classification of all the documents they contain.
However, the overall classification is not necessarily the least upper bound of
the title classifications and the document classifications, but could be
significantly greater. For example. a Secret file may only contain Confidential
documents. Documents on a file are ordered by enclosure numbers., which are
taken from the set of natural numbers.

’_FILE

title ¢ FTITLE
title_class, overall_class : CLASS
docs : seq CAPABILITY

ran docs & caps_for_docs (1)
overall_class 2 title_class (2)
Y i,j : dom docs « does(i) = docs(|) e i = j (3)

(1) Only capabilities for documents may be put on a file.

Note that although this specifies that +¢iles can contain only
document capabilities, it i1s only later., see section 3.4, the Filing
System, that it can be insisted tha* these documents actually
exist.

(2) The overall classification of a file must dominate the title
classification.

Note that the fact that the overall classification must also
dominate the classification of all the documents on the file cannot
be specified until later {(section 3.4).

{3) Documents cannct be put on a file more than once.

Note that the position in the sequence of f{iled capabilities
represents the enclosure number of the document.

As for documents., 3 mapping between the fiie capabilities and files is required.

THE_FILES
rwhich_{:ile : CAPABILITY »» FILE

dom which_file ¢ caps_for_files

g file : ran which_file « file.docs = () (1)
U i,j: ran which_file »
ran i.decs N ran j.docs # {} e i = j (23
i.title = j.title = i = | (3)

The which_file function maps the file capabilities to their particular files. The
domain of this function 1s the setl of all the capabilities for files so far
created. Hence the range is the set of all the files created so far.

(1) Files cannot be empty.

{2) Documents can only be on a single file.

Documents and Files 8

(2, All files can be unigely identified by their title.

Hence a document can be uniquely identified by supplying a file title and =-
enclosure number.

ATHE_FILES a [THE_FILES’: THE_FILES]
ETHE_FILES & [ATHE_FILES | eTHE_FILES' = eTHE_FILES]

>

3.4. The Filing System

The filing system for Sercus i1s simply the files and documents so far creztec
together with the constraint that the files can only contain carpablities fo-
documents that exist.

+

FILING_SYSTEM

THE _DOCS
THE_FILES

-

4 file : rar w~izh_file
ran file.docs g dom which_doc (1)

Y d: which_doc (ran file.docs J &
file.overall_class 2 d.classification (2)

J— |

(1) Files can only contain capabilities for known documents.

(2) The overall classification of a file dominates the classifications of
all the documents 1t contains.

OFILING_SYSTEM & [FILING_SYSTEM' 5 FILING_SYSTEM)

EFILING_SYSTEM & [AFILING_SYSTEN |
8F ILING_SYSTEM® = eFILING_SYSTEM)

It 1s important to note that, in this specification, operations on documents must
be performed via the filing system. This is because files can alter as a s:de
effect of the simple operations on documents. For example, changng t-e
classification of a8 document could slter the classification of any file thee
contains a capability for the document.

3.5 Destroying Objects

No operations to explicitly destroy objects in Sercus are defined. This s
because unlike in the paper world, documents and files may be accessed E-
more than one user at a time. Revoking access to, or destroying., the objects
then proves very difficult, as users could still possess capabilities fc-
objects that no longer exist. Rs far as this specifiction is concerned, the
capabilities could even potentially have been reused for cother ohjects. An.
journalled information about the object could also have been lost. and this s
undesirable in a secure system. However., documents and files could be
effectively removed by regrading them so that no users are cleared to see
them any more.

3 Oocuments and Files

3.6. Filing System Operations

This section describes the underlying filing system operations. These will be

further defined as the specification proceeds (refer to part 2).

3.6.1 create a document

Creating a document involves providing some contants and a classification. This
operation results in a new document and capability which are added to the
which_doc function. Herce, the operation involves a change to the existing
documents, but not to any files. In the paper world all documents are recorded
on the cdr and on creation will be given a cdr number to reference them. Hence,

this operation also results in the new cdr number.

__create_document

basic_op

AFILING_SYSTEM
ZTHE_FILES

classification? : CLASS
contents? : P CAPABILITY

new_cap! : CAPABILITY
new_dac! : DOCUMENT
cdr_num! : COR_NUM

contents? ¢ dom which_doc (1)
new_cap! ¢ dom which_doc (2)
new_doc! ¢ ran which_doc (3)
new_doc!.classification = classification?
new_doc!.contents = contents?
new_doc!.cdr_number = cdr_num!
Ud: ran which_doc « (4)
cdr_num! 2 d.cdr_number
cdr_num! 2 d.cdr_number
which_doc’' = which_doc U { new_cap! ~ new_doc! } (53

J

(1)

(283)

(4)

(5)

The contets of a new document can only be capabilities to already
known documents.

The new document and its capability did not exist before the
operation.

This means that the capsbility for the new document cannot be part
of the supplied conterts. Hence, since document contents are
unalterable. no document can refer to itsalf.

The new document has the supplied classification and contents and
is assigned a cdr number. This cdr number is not one of those
belonging to already existing documents., and is 'greater than' all
the exiting numbers. However the new number is not necessarily the
next in the sequence, and it is possible that there are 'holes’ in
the cdr.

After the operation, the new capability will be mapped to the new
document by the which_doc function. All other magpings are
unchanged.

Documents and Files 10

-

|

-

—

3.6.2 read a document

Opering a document does not alter existing documents or files. A capab:lit;
for a document is supplied, and the operation results in the set of car
that make up its contents.

— read_document

basic_op n

SFILING_SYSTEM
doc_cap? : CAPABILITY
contents! : P CAPABILITY

contents! = which_doc{ doc_cap?).contents

J

Note that at this level of specification there s no nction of
checxing clearances. This cannot be added until after the users
have been specified (section 14).

3.6.3 finding documents

Users will be able to ask for documents b, their cdr number or file title and
enclosure number. This operation lists all the documents known to Sercus by
the:r cdr number, but does not alter any documents or files.

__list_cdr

basaic_op !

EFILING_SYSTEM
cdr! : seaq CDR_NUM

ran cdr! = { d: ran which_doc « d.cdr_number > (1)

Y 1, J s domedr! | 12§ ecdr!C i)2cdr!C §) (Z2)

J

(182) Listing the cdr results in a segquence of all the cdr numbers for
existing documents. This sequence i1s ordered.

The fcllowing operation looks up a cdr number and returns the asscciztecd
document capability. The filing svstem is unaffected.

find_document

—

basaic_op -

ZFILING_SYSTEM
cdr _num? : CDR_NUM
doc_cap! : CAPABILITY

cdr_num? € { d : ran which_doc « d.cdr_number } (1)
which_doc(doc_cap! }).cdr_number = cdr_num?

)

(1) The cdr number must be assigned to an existing document, and the
correct document capability is supplied.

11 Documents and Files

-/

e

This operation takes a file title and enclosure number and returns the required
document capability. The filing system is unaffected.

__find_filed_document

basic_op |

EFILING_SYSTEM

title? : FTITLE
enc? : N

doc_cap! : CAPABILITY

doc_cap! = file.docs(enc?)
where
file : ran which_file | title = title?

This operation lists the contents of a file. The filing system is unaffected.

—file_contents

basic_op |

EFILING_SYSTEM
title? : FTITLE
caps! : P CAPABILITY

caps! = file.docs
where
file : ran which_file | title = title?

Note that further contraints will be added in part 2 to ensure that
the user performing this operation is cleared to see the file
contents.

3.6.4 add document to a file

Adding a document to an existing file involves supplying the file and the
document capability. The enclosure number of the document on the file is
returned. The overall file classification may have to increase, in order to
dominate the classification of the new document. No other files or any of the
documents are changed by this operation.

Documents and Files 12

__add_doc_to_file

basic_op -

OFILING_SYSTEM
=THE_DOCS

file_cap? : CAPABILITY
doc_cap? : CAPABILITY

file! : FILE
enc! : N

file_cap? € dom which_file
doc_cap? € dom which_doc
doc_cap? ¢ W file : ran which_file « ran file.docs }

hﬁ
NFSR

file! € ran which_file
file!.docs = which_filel file_cap? J).docs ~ (doc_cap?)
file!.title = which_file(file_cap? J.title
file!.t1tle_class = which_filel(file_cap?).title_class
file!.overall_class = uhuchEFile(file_cap?).overall_class
lu
which_doc(doc_cap? J.classification

which_file’ = which_file e { file_cap? - file! } (

w)

enc! = # file!.docs

(182) The capability supplied must be for an existing document that s not
already on any file.

(3) After the operation, the supplied capability now refers to a new
file (replacing the old file). This file is a copy of the ariginal file
except that the new document is added to it and the overail

? classification dominates the new document’s classification. No

other files are changed.

3.6.5 create a file

To create a file, a document, file title and title classification must te
supplied. The overall classification is the document classification, which must
of course dominate the title classification. The document cannot slready be on
any file. The which_file function will now also map the file capability to the nex
file. The existing documents are not changed and nor are any previous files.

13 Documents and Files

create_file

basic_op i

=

AFTILING_SYSTEM
ETHE_DOCS

doc_cap? : CAPABILITY
title? : FTITLE
title_class? : CLASS

new_file! : FILE
new_cap! : CAPARBILITY

doc_cap? € dom which_doc (1)
doc_cap? ¢ VU{ file : ran which_file « ran file.docs } (2)
title? ¢ { file : ran which_file « file.title } (3)
which_doc(doc_cap?).classification 2 title_class? (4)
new_cap! ¢ dom which_file (5
new_file! ¢ ran which_file (6)

new_file!.docs = (doc_cap?)

new_file!.title = title?

new_file!.overall _class = which_doc(doc_cap?).classification
new_file!.title_class = title_class?

which_file’ = which_file U { new_cap! » new_file! %} (?7)

J

(122) The capability supplied must be for an existing document that is not
already on any file.

(3) The supplied title must be unique.

(4) The classification of the document to be put on the file (this will
be the overall file classification) must dominate the given title
classification.

(586) A new file capability and file are created, ie they did not exist
before the operation.

(7?) After the operation, the which_file function will map the new
capability to the new file. No other files are changed.

3.6.6 regrade file

Both the title and overall classification of a file may be regraded. However.
the overall classification of a file cannot be regraded lower than the title
classification. In such cases. the title classification would have to be
regraded first.

Changing the classification of a file involves supplying the file and a new

classification. The following schemas specify regrading the title and the
overall classifications of a file.

Documents and Files 14

r__r'es;raz:!e_f'nle_,t|tle

vy

basic_op

OFILING_SYSTEM
ETHE_DOCS

file_cap? : CAPABILITY
title_class? : CLASS

file! : FILE

file_cap? € dom which_file
file! ¢ ran which_file

file!.title_class = title_class?
file!.docs = which_file(file_cap?).docs1
J.title

file!.title = which_file(file_cap?

file!.overall _class = which_file(file_cap”

which_file' = which_file ¢ { file_cap? » file!

J.overall_class

(39

__regrade_file

(1) The file to be regraded must be known to the system.

(2) A new file is created, ie one not known before the operation. This is
a copy of the file to be regraded., except that it has the new title

classification.

Note that the title classification cannot be greater than the

overall classification.

(3) The original file i1s replaced by the new file and no other files are

changed.

OFILING_SYSTEM
OTHE _DOCS

file_cap? : CAPABILITY
overall_class? : CLASS

file! : FILE

tfile_cap”? € dom which_file
file! ¢ ran which_file

file!.overall_class = overall_class?

file!.docs = which_filel file_cap?

filel.title = which_file(file_cap?

which_file' = which_file e { file_cap? » file!

).docs
J.title
file!.title_class = which_file(file_cap?

—~—

J.title_class

N —

(3)

— e

(1) The file to be regraded must be known to the system.

(2) A new file is created., ie one not known before the operation. This is
a8 copy of the file to be regraded., except that it has the new

overall classification.

Note that the Filing System schemas
classification must dominate the classification of all the documents
on the file, and consequently a file cannct be regraded lower than
the least upper bound of all the documents classifications.

15

insist that the overall

Documents and Files

— T e T
m——'—-——-—'——“——f—ﬁ

T T TR

I TP

. — —

(3) The original file is replaced by the new file and no other files are
changed.

Simply regrading a file does not alter any documents. However., regrading a
document may result in a file classifcation being regraded., hence splitting the
regrade_file schema into two parts.

regrade_file # regrade_file A ZTHE_DOCS

basic_op

3.6.7 regrade document

Rearading a document involves supplying a document and a new classification. If
this document is on a file, the overall classification of the file may have to
change as a consequence.

The operation is split into two parts. The first regrade schema is relevent when
the document in question has not been filed, and the second when it has.

This regrade operation simply changes the classification of a document that is
not on any file.

r_resrade_unfiled_document .

AFILING_SYSTEM
ETHE_FILES

doc_cap? : CAPABILITY
class? : CLASS

doc! : DOCUMENT

doc_cap? € dom which_doc (1)
doc_cap? ¢ U{ file : ran which_file « ran file.docs } (2)
doc!.contents = which_doc(doc_cap?).contents
doc!.cdr_number = which_doc(doc_cap?).cdr_number
doc!.classification = class? (3)
which_doe’ = which_daoc e { doc_cap? ~ doc! } (4)

(182) The document to be regraded must be known, and is not on any file.

(3) A new document is created which is given identical contents and cdr
number, but has the new classification.

(4) After the operation, the which_doc function maps the document
capability to the new document. No other documents are changed.

This following schema defines the operation to change the classification of a

filed document and indicates which file the document is on. However., it does not
alter the overall classification of the file.

Documents and Files 16

T T T

regrade_filed_document

F_AFILING_SYSTEN

class? : CL

doc! : DOCUMENT

doc_cap? : CAPABILITY
ASS

file_cap? : CAPABILITY

doc_cap? € U{ f

doc! ¢ ran whic
doc!.contents =
doc!.cdr _number
doc!.classifica

ile :

h_doc

doc_cap? € dom which_doc
ran which_file « ran file.docs }

which_doc(doc_cap?).contents

= which_doc(doc_cap?

tion =

class?

which_doc' = which_doc e { doc_cap? ~ doc! }

doc_cap? € ran (which_file(file_cap?).docs

)

w N

).cdr _number

(4)
(5)

(182) The document to be regraded must be known, and must be on a file.

(3) A new document is created which is given i1dentical contents and cdr
number, but has the new classification.

(4) After the operation.

the which_doc function maps the document

capability to the new document. No other documents are changed.

(5) The file capability refers to the particular file that the document

is on.

This schema specifies both regrading a filed document and the file it is on.

regrade_file

regrade_doc_and_file

regrade_filed_document

overall_class?

= which_file(file_cap?

lub
class?

J.overall_class

(1)

J

(1) The new overall classification of the file will be the least upper
its original classification and

bound of
classificati

on.

the new document

The complete regrade operation is either the simple regrade if the documert s
not on a file, or regrading both the document and the file it is on.

regrade_document

basic_op

& regrade_doc_and_file

v regrade_unfiled_document

17

Documents and Files

)T

4. Other Objects

Capabilities are not restricted to refer to only documents and files. It s

l possible for anonymous objects to exist about which the system knows very
Little, except their contents. The only interesting contents of an anonymous
object is the set of capabilities it contains.

v These anonymous objects could for example contain the characters for making

up the non capability contents of a document that ould exist in a real system.
ANON .

I—contents : P CAPABILITY
Rs for documents and files, a function to map anonymous capabilities to their
associated object is required.

(

‘ __ THE_ANONS -

g which_anon : CAPABILITY s ANON

' dom which_anon ¢ caps_for_anon

Similarly the domain of this function gives the set of all existing capabilities
for unknown objects, and the range gives all the existing unknowns.

OTHE_ANONS & [THE_ANONS’ ; THE_ANONS)
ETHE_ANONS & [ATHE_ANONS | eTHE_ANONS' = gTHE_ANONS 1

The contents information about anonymous objects wWill be required
later when these objects are copied and stored.

The most useful operation on an anonymous object is to make a copy of it.

__Copy_anon

ATHE _ANONS
original?, copy! : CAPABILITY
new_anon! : ANON

copy! & dom which_anon
new_anon! ¢ ran which_anon
new_anon!.contents = which_anon(original?).contents

—_ -

N —
—

which_anon’ = which_anon U { copy! = new_anon! }

(122) A completely new capability and object are created.

Other Objects 18

S. Displays

5.1 Introduction

A display in Sercus will consist of a set of windows. Some of the wndows Wil be
running untrusted software., although this will be monitored by the wnccoa
software, which is trusted. Windows will have a set of capabilities that are
available to them. The display will contain 3 visible representation of some of
these capabilities. Windows that are monitoring untrusted software will have the
correct classification of the information in the window displayed at all tmes.
The windows that are not running any untrusted software will form the trustec
path. Certain security critical operations will only be executed if they have
been invoked from the trusted path [5].

The set of all possible capabilities can be partitioned into two sets. Trustec
capabilities are associated with objects that can be trusted to maintan t-e -
own classification. The untrusted capabilities need to be supervised.

trusted_caps : P CAPABILITY
untrusted_caps : P CAPABILITY

| { trusted_caps, untrusted_caps) partition CAPABILITY

§.2 High Water Marks and Related Groups

Some of the objects in Sercus, such as files and documents., have ther
classification bound into them. and are trusted to maintain it correctly. Otner
objects are not classified as such. However, a mechanism 1s needed to moriteor
the classification of information these untrusted objects have access to. Ths
is done by means of high water mark classifications.

Whenever untrusted software is accessing objects that do not protect the:~ own
classification, the worst case situation must be anticipated, and it is assumed
that all these objects have access to all the information avalable to the
software. MWhenever one of the objects in such a8 related set has tes
classification increased., perhaps by opening a document, all the other objectis
are assumed to have access to the same information, and must be class:fies
accordingly. These relationships are monitored by having related groups cf
objects and a high water mark classification associated with each group.

[GROUP 1)

Group objects are the mechanism for indicating the relationships between
untrusted capabilities. Untrusted capabilities can be assocrated with a grous
object taken from the given set, and will be assumed to be related if they
refer to the same group object. Capabilities can only belong to a single related
set, and hence can only refer to a maximum of one group object. Each aroup
object has a high water mark classification associated with it.

19 Displays

©en

Restricted Restricted Secret

Figure 1: As far as Sercus can tell, the objects in each circle
are related. and the capabilities for these objects will
all be associated to the same group object. The group
objects have the high water mark classification
associated with them.

__ HIGH_WATER_MARKS

which_group : CAPABILITY « GROUP (1)
hwm_class : GROUP -+ CLASS (2)
dom which_group € untrusted_caps (3)
ran which_group € dom huwm_class (4)

(1) Capabilities are related if they refer to the same group. This is a
function because each capability can only belong to a single related
group., and partial because not all capabilities necessarily belong
to a group.

(2) The relationship between groups and classifications is a function
because each group has a single classification associated with it.
This function is partial because it will be necessary to create new
groups. Related sets could have the same classification, and hence
the function is many to one. The domain of this function is all the
group objects that have been created so far.

Note that not all the existing group objects necessarily have any
capabilities associated with them.

(3) Only untrusted capabilities belong to groups.

(4) All known groups wWill have a classification associated with them,
regardless of whether any capabilities are in the group or not.

OHIGH_WATER_MARKS 2 [HIGH_WATER_MARKS®' : HIGH_WATER_MARKS]

SHIGH_WATER_MARKS & 1 AHIGH_WATER_MARKS
| 8HIGH_WATER_MARKS’ = eHIGH_WATER_MARKS]

Displays 29

m—-——-‘ —— ———y — ———re——— 7

5.3 Windows in Sercus

-

R window is modelled as the set of capabilities that are avalable to 1t. Tre
characters on the screen are uninteresting as far as this specficaticn s
concerned and are not specified.

WINDOW

[_avallable : P CAPABILITY

-

J

[WID 1

Windows need to be distinguishable even if they contan identical sets of
capabilities. In order to be able to do this, windows have a umque dent.f-e-
associated with them, taken from the given set.

THE _WINDOWS
which_window : WID -« WINDOW (1)

The dcmain of the which_window function gives the set of all wndow identifiers
that are valid, and the range all the windows that exist.

(1) This is a function because window identifiers can only refer to one
window. The function is partial because not all the possible windsus
have yet been created, and many to one because two sesarate
Wwindows can contain the same set of capabilities.

OTHE_WINDOWS 2 [THE_WINDOWS® ; THE_WINDOWS]
ETHE_WINDOWS & [ATHE_WINDOWS | eTHE_WINDOWS' = eTHE_WINDOWS]

§£.4 Untrusted Software

Untrusted software has a set of capabilities that 1t can manipulate. Al
untrusted software will be monitored by a3 window and some of the carabilites
that the untrusted software is manpulating will also be known tc this window.
Since it must be assumed that all untrusted capabilities available to softwa-e
are related, the monitoring window wWill maintain a related group and high water
mark classification for all those that it is aware of. This classification will ke
displayed in the Window.

In all the following diagrams objects in the clear circles could be
related and wll all refer to the same group object. For clarity,
these group objects have been omitted from the diagrams. Each
related group has a high water mark classification associated with
it. The thicker edged squares are the windows and the other
squares the untrusted programs. All the capabilities in each square
are those that are available to it. Any capabilities in the overlap
are those that the untrusted software is manipulating that the
window software is aware of.

21 Displays

—€)

ce---4 High Hater Hark

Window -

% untrusted capability @ trusted capability

Figure 2: MWindow not running any untrusted software.

—Top Secret] Trusted Software boundary

1 o ’
02 2 , > S~

AUntrusted Software boundary

Figure 3: Window that is running untrusted software.

__UNTRUSTED
using : P CAPABILITY

monitoring : WID
known : P CAPABILITY
group : GROUP

class : STP

—_—_—
wnN -
—

known & using N untrusted_caps (4)

|

(184) All untrusted software is monitored by a window. A subset of the
capabilities that the untrusted software is using will be untrusted
capabilities that are known to the monitoring window.

(283) Untrusted software will also have a related group of capabilities
associated with it and the classification for this group will be
displayed.

All the known capabilities in the untrusted software will be assumed

to be related and so will all belong to the same group. The
monitoring wWindow will maintain the group and high water mark

Displays 22

P S —— T i hd

— T e v e

classification for this set. which may be empty. This wll be fully
specified in the following section.

5.5 The Display

A display consists of windows and untrusted software, together wth the s+
water marks and related groups information.

__DISPLAY -
HIGH_WATER_MARKS
THE _WINDOWS
windows : P WID
programs : P UNTRUSTED
windows & dom which_window
{p programs e p.ii'd } £ Windows (1)
Y p, q : programs « g.manitoring = g.manitoring e p = g (2
U p programs .
p.known = M{ p.using, untrusted_caps.,
which_window(p.monitoring J.ava:lable 2} (3
Yec: p.known « which_group! ¢)} = p.group (4
p.class = show hwm_class{ p.group ! (%)
Y w WINdOWS e
which_window(W J.availaktle N untrusted_cars
¢ dom which_sroup (e°

(1) The programs in the display are monitored by windows in the disglay.
However, not all windows are monitoring untryusted programs.

(2) Windows can only monitor a single program.

(3) The known capabilities in the untrusted software are untrustec
capabilities that are also available to the monitcring window (the
intersection 1n the diagrams).

(4) All the known capabilities refer to the grous obiect for the
program, ie they could be related.

(5) The classification displayed when untrusted software s running s
the correct high water mark for the related group.

(6) Rll the untrusted capabilities in a8 window will belong to sc-e

related group and hence have a high water mark class/ficatien.
However, these capabilities are not necessarily related and so <
not have to belong to the same group.

ADISPLAY o [DISPLAY' ; DISPLAY)
EDISPLAY a [ADISPLAY | eDISPLAY’ = gDISPLAY]

5.6 Display Operations

This section defines the operations that take place in a display which a-e
concerned with the windows and untrusted software. All the operations in Sercus
will in fact be nitiated from a window in & display. However this s not specified
until part 2.

23 Displays

5.6.1 create a window

Creating a new window does not alter the high water marks or running software.
A new empty wWindow is simply added to the display.

create_window

basic_op J

ADISPLAY
ZHIGH_WATER_MARKS

new_wid : WID
empty_window : WINDOW

new_wid ¢ dom which_window (1)
empty_wWindow € ran which_window (21
empty_window.available = {} (3)
which_window' = which_window U { new_wid » empty_window >

Wwindows’' = windows U { new_wid } (4)
programs’ = programs (5)

(1R2) The new wWindow and identifier are unique.

(3) The rew window has no capabilities available to it imtially. The
window wWill not be running any untrusted software.

(485) The new window is added to the display. No other windows or any
untrusted software is affected.

5.6.2 call untrusted software

Untrusted programs can only be initiated from 3 window in a display that is not
already monitoring any untrusted software. R new group object will be created
for this software. All the capabilities kmown by both the untrusted and the
trusted software will refer to this group %o indicate that they could be
related. Initially the untrusted software will have no capabilities available to
t and the classification will be the lowest possible.

Honltorins Window

: h E ’/_\\
1 2 % ’ -—<{ Empty SRS Bottom
o ; | \ Group
) o
!
1

AA"Untrusted Software

Figure 4: The window has started to run untrusted software. This
software has no capabilities available to it and the
clagsification displayed will be the lowest possible.

Displays 24

——y -y —

__run_untrustedb"‘c_”

ODISPLAY
ZTHE _WINDOWS

wid? : WID

prog! : UNTRUSTED
graup! : GROUP

Wid? € windows
wid? ¢ { p : programs « p.monitoring

group! ¢ dom hwm_class
which_group’ = which_group

prog! € programs
prog!.using {}
prog!.group group!
prag!.class show bottom
prog!.monitoring = wid?

[

Windows'® = Windows
programs’ = programs U { prog! }

hum_class’ = hwm_class U { group! » bottom ¥

(2)

(3)

(4)

(1) Only an existing window that is not already momtoring untrusted

|
} software can start to run the program.
f
|

) function is unchanged).

group object.

programs are affected by the operation.

5.6.3 add to untrusted

the first case.

25

(3) A new untrusted progsram s creasted.
capabilities availakble to 1t. The group for this software 1s the new

this

(2) A new group object is created, and added to the high water marks
function with a classification of bottom.
capabilities belonging to the group (and hence the which_group

Intizlly there are nc

has no

(4) The new program is added into the display. No windows or existing

This operation takes capabilities from a window that is running an untrusted
program and makes them avalable to the software. This could be viewed as a
'cut and paste’ operation or as passing parameters to an untrusted functicn.
This operation does not necessarily take place between the software and the
window that is monitoring it. The untrusted software could be in a completely
separate window. Note that for simplicity all the following diagrams 1llustrate

Displays

ot

e

 — @;>.-——> Bottom
. Group
‘ “\//

U ————— —» Restricted

<DD ——————— » Secret

Figure Sa: The state of the window after starting to run an
untrusted program and prior to passing capabilities to
the untrusted sof tware.

r—Restricted—
r 2N

! / \

‘ =57 b—— Restr icted
® o By

.i] }

® %

Z

Figure Sb: The state of the window after one trusted and one
untrusted capability have been added to the untrusted
software.

A new group object will be created. Rll the untrusted capabilities being added
to the software are made to refer to this group. Any capabilities that could
a.so be related to these must be made to refer to the new group as well.
However these extra capabilities may not in fact be available to the untrusted
program, the worst case is always assumed.

Secret

Figure Sc: After a further untrusted and two trusted capabilities
have been added.

Displays 26

prog!

r_guve_to_untrusted

basic_op

ADISPLAY
ZTHE _WINDOWS

wid? :
prog? : UNTRUSTED
caps? : P CAPABILITY

group! : GROUP
groups! : P GROUP

WID

UNTRUSTED

wid?

prog'
prog!
prog!
prog!
prog!
prog'

prog? € programs
caps? € which_window(wid?).available

groups! = which_group (caps? }
group! ¢ dom hum_class

which_group’ dom(which_group b groups!) 3 = { group'
which_group’ b groups! = which_group b groups!

dom hwm_class’ = (dom hwm_class \ groups!) U { group! 2}
hwm_class’ (group!) = LUB { g: groups! « hum_class(g) }
(groups! U { group! }) 4 hum_class' = groups! € hwm_class (

€ Wwindows

S w N —

—_ -
—

€ programs

.using = prog?.using U caps”?

.known = prog?.known U (caps? N untrusted_caps)
.manitoring = wid?

.group = group'!

.class = show hwm_class’' (group!)

[N —~—
[enBdoNes] ~NJ

programs’ = (programs \ { prog? >) U { prog! > (119
Windows' = windows

(1

(2)

(3)

(4)

(5

(687)

(8-10)

The window and program must be in the display. However the program
is not necessarily being monitored by this window.

All the capabilities being given to the software are available to the
WiNdoW.

This defines the set of related groups that all the capabilities
being given to the software belong to.

A new group object is created. This will give the new related grour
and high water mark for the untrusted software.

A new untrusted program is created. This has the same capabilities
available as the program the window I1s running plus the nex
capabilities. The window monitoring the untrusted does not change.

All the untrusted capabilities being added, and those that they a-e
related to, are made to refer to the new group. Rl]l other related
sets are unchanged.

The new group replaces all the original groups in the high water
mark classifications relation. The high water mark for this new
group is the least upper bound of all the classifications of the
original groups.

27 Displays

(11) The new program replaces the original one in the display. No windows
are affected.

5.6.4 take from untrusted

This operation takes capabilities from the untrusted software and adds them to
a trusted window, but not necessarily the window that is running the program.
This set of capabilities will be assumed to be related and will be given the high
water mark classification associated with the untrusted software. This could be
viewed as either a 'cut and paste’ operation or as returning the result of an
untrusted function.

—Confidential—

2 ><4—2_ /
@ P ﬁﬁ—b Confidential
N

° %2__J———1.'_—
o @

Figure 6a: The state of the window before the operation.

‘—Confidential—l

¢ @ 1‘ ® M)——» Confident ial
®

@ \
T

L
| @

Figure Bb: After an untrusted capability has been given to the
monitoring window.

Displays 28

take_from_untrusted

r— basic_op
ADISPLAY
wid? :+ WID

prog? : UNTRUSTED
caps? : P CAPABILITY

extra! : P CAPABILITY
Wwindow! : WINDOW

wid? € Wwindows (1)
prog? € programs 23
caps? € prog?.using (3)
extra! = caps? N untrusted_caps

N (prog?.using \ prog?.known) (4)

window! ¢ ran which_wWindow
Window!.available = which_window(wid? J).available U extra!

which_window’ = which_window @ { wid? » window! } (5)
which_group’ (extra!) = { prog?.group ¥

extra! € which_group’' = which_group (6)
hwm_class’ = hwm_class

Windows' = windows

programs’ = programs

J

(1-3) The window and program are in the display (but the window is not
necessarily monitoring the program). All the capablities are
availakle to the software.

(4) This defines the set of untrusted capabilities being given to the
window that it was not previously aware of.

(5) A new window 1s created. The capabilities available to this window
are those avalable to the inittal window., plus these extra

capabilities. This new window replaces the previous window.

(6) The extra capabilities now belong to the group for the untrusted
software. No other groups are affected.

5.6.5 complete untrusted

This operation destroys the untrusted program that a window 1s monitoring. Ths
can be viewed as returning from an untrusted function call, and will probssily
only be domne when results have been given to the window by the
'take_from_untrusted’ operation described in the previcus section. No windows
or high water marks are affected by this operation.

28 Displays

-

Y

L4

e M A — . . . -t g

Figure 7?a: The state of the window before the operation.

Figure 7?b: After the untrusted program has finished.

ADISPLAY

Z

T e

@/

__complete_untrusted

ETHE _WINDOWS
EHIGH_WATER_MARKS

prog? : UNTRUSTED

basic_op ——r—————

prog? € programs

programs’ = programs \ { prog? }
Wwindows' = wWindows

Displays 30
. 2. > [P

PR

- —— ———— —~ —T— —j:) —_—
Secret
® ® A P Secret
. @ - -;C/ - secre
® | o T o
o @

T e T T

T

6. Storing Capabilities

6.1 Introduction

Capabilities may be kept in a cupboard. A cupboard is simply a relationshop
between names and the capabilities they represent. These names &re
represented by printable character strings. Cupboards are simlar tc
dictionaries or directories.

Any type of capability may be kept in the cupboard. However, when capabilities
to untrusted objects are stored, they must be first copied to avod the
problems of related sets (refer to section 5.2), and the high water mar«
classification must be remembered as well.

6.2 Cupboards

CUPBOARD

name : STR « CAPABILITY
class : CAPABILITY « CLASS

——~
N
N

dom class = (ran name) N untrusted_caps (3)

p—

(1) The relationship between names and capabilities is a function
because each name can only refer to a single capability. The
function is partial beacuse not all strings are used. There are no
restrictions concerning naming capabilitirs more than once in the
cupboard.

(2) The ‘'untrusted capabilities to classifications’' relationship 15 a
function because there 15 a single classification for each
capability. The function is partial because only some capabilities
are kept in the cupbaord.

(3) The cupboard keeps a classification for all the untrusted
capabilities that are stored.

>

ACUPBORRD & ([CUPBOARD' ; CUPBOARD]

>

ZCUPBOARD a [OCUPBOARD | 8CUPBOARD™ = 8CUPBOARD]

6.2 Cupboard Operations

An empty cupboard is defined. This is a cupboard with no named capabilities a-d
consequently no stored classifications erther.

__create_empty_cupboard ___

empty_cupboard : CUPBOARD

empty_cupboard.name = {}

J

The simple operations on a cupboard are find and keep.

Looking up a name in @ cupboard will return the stored capability. and if this s

31 Cupbcards

m“"*

an untrusted capability the associated classification as well. The contents of
the cupboard will be unaltered.

rrindtrunod ™ [—Finduntrusted 9
=CUPBOARD (1) =CUPBOARRD (1)
name? : STR name? : STR
cap! : CAPABILITY cap! : CAPABILITY

class' : CLARSS
cap! = name(name?) (2)
cap! € trusted_caps cap! = name(name?) 2)
s cap! € untrusted_caps
class! = class(cap!) (3}

(1) The cupboard is unaffected by find.

(2) The capability returned is the the one that was stored with the
given name.

(3) If the capability is untrusted., the correct classification is
returned.

Keeping a capability in the cupboard adds the capability, and the classification
if it is an untrusted capability ., under the supplied name.

__keep

trusted 1

ACUPBOARD

name? : STR
cap? : CAPABILITY

cap? e trusted_caps

name? ¢ dom name (1)
name’ = name U { name? ~ cap? } (2)

r—keEpuntrus(od -
ACUPBOARD

name? : STR
cap? : CAPABILITY
class? : CLASS

cap? € untrusted_caps

name? ¢ dom name (1)
name' = name U { name? w» cap? } (2)
class’ = class U { cap? » class? } (3)

(1) No capability has already been stored with the supplied name.

(2) The new name-capability relation is added to the cupboard. No other
relationships are affected.

(3) If the capability being added is untrusted., its classification will
also be remembered. No other classifications are affected.

Cupboards 32

Note that what is in fact kept in the cupboard will be a capability to
a copy of the object. This removes the problem side effects due to
operations involving related sets of capabilities, and i1s fully
specified in part 2.

33 Cupboards

- W*W‘? R

S —— -— ~— vy T T T T e "“‘y

7. Users
7.1 Introduction

As in the paper world users can have specific roles. In Sercus the special kinds
of users are 'system security officers' and 'registry clerks’'. Only registry
clerks will be able to create new files and only security officers will be able
to regrade documents and files. Security officers will also be able to change
users clearances and create new users.

These specific roles in Sercus will be indicated by a user having a clearance
which dominates the particular classification.

ss0 : CLASS
clerk : CLARSS

For example, users are registry clerks if their clearance dominates the clerk
classification.

7.2 The Users of Sercus

[PASSWCRD 1
Users of sercus will have a password, which is taken from the given set., a
clearance and a cupboard in which to store capabilities.

USER

password : PASSWORD
clearance : CLRASS
cupboard : CUPBOARD

[UID]
Users can be uniquely identified by a UID taken from the given set. At least one
of the users must be a system security of ficer.

__ THE _USERS .
which_user : UID »» USER (1)
my_display : UID »» DISPLAY (2)
dom my_display ¢ dom which_user (3)

Ua, b: ran my_display «
dom a.hum_class N dom b.hum_class # {} «=» a = b (4)

a.windows N b.windows # {} «» a = b (53
U x, ¥y : ran which_user .

x.cupboard = y.cupboard e x = y 6)
3 sec : ran which_user « sec.clearance 2 sso (?7)

S |

The domain of the which_user function gives the set of all valid user
identifiers, ie the legal users, and the range all the users. Similarly the
range of the my_display function gives all the valid displays.

(1) Since the relationship between the user identifiers and the users is
a function, there is a single user associated with each identifier.

Users 34

o ———————— " v)

The function is partial so that new users can be added t~ i-=2
system and one tn one sg that each user has a single idert. fier.

(2) The display will be frequently altered by the operations that users
perform. Hence there is a mapping from users to ther displars.
The relationship is a function because each user can only have a
single display, partial so that new users can log in and cne to cne
so0 that each display only belongs to a single user.

(3) Not 8ll valid users need have & display associated with them.
Obviously, the users who are not currently logged in will not have a
display.

(4) This predicate states that no two users can have the same group
object associated with ther displays. Group objects define the
sets of related capabilities. This means that only a single user can
have a capability for an untrusted object, and hence that users
are not related.

(588B) Users cannot share windows or cupboards.

(7)) There must be at least one security officer.

b

OTHE_USERS & [THE_USERS' ; THE_USERS]
ETHE_USERS e [ATHE_USERS | eTHE_USERS' = 8THE_USERS 1

b

There will be a group of users who are currently logged on to Sercus. These
must be valid users, ie have a user identifier associated with them.

_ USER_STATE

THE _USERS

logged_in : P UID (1)
logged_in ¢ dom which_user (2)
dom my_display = logged_in (3)

(1) Users can only be logged in once. and hence this is a set.
(2) Only valid users may use Sercus.

(3) A1l the logged in users, and only these, will have a display
associated with them.

b

QUSER _STATE o [USER_STATE' ; USER_STATE]

EUSER_STARTE o [AUSER_STATE | BUSER_STATE' = @USER_STATE]

7.3 User Operations

This section describes the basic user operations such as logging in and out. The
filing system and display operations described earlier will also be performed by
users., but this will be specified in part 2.

A facility to explicity delete the users of Sercus will not be provided. Instead
there will be an 'authorised’ classification. Users will only be able to log on f

35 Users

P ———— T)

their clearance dominates this classification. Changing a users clearance so
that it is dominated by 'authorised’ will therefore effectively remove them.

{ authorised : CLASS

7.3.1 create a new user

To create a user, a new identifier, password and clearance must be supplied. A
new user with this password and an empty cupboard is added to the valid users.
ie the which_user function. New users will not be logged on so wWill have no
displays associated with them. No other users are affected.

—_Create_user

basic_op b

AUSER_STATE

uid? ¢ UID
passward? : PASSWORD
clearance? : CLARSS

new_user! : USER
create_empty_cupboard

vid? ¢ dom which_user
new_user! ¢ ran which_user

—~ -

w N

neW_user !.password = password? (
rew_user !.clearance = clearance?
new_user !.cupboard = empty_cupboard

which_user’ which_user U { uid? » new_user! } (%)
my_display’ my_display
logged_in' = logged_in

(182) The user identifier and user do not already exist.

(3) The new user is given the supplied password and clearance, and an
empty cupboard.

{(4) The new user becomes a valid user, and no other users are
affected.

Note that the ability to create new users is resticted to the
system security officers, and is fully specified in part 2.

7.3.2 log in

To log onto Sercus a user identifier and password must be supplied. The user
must be authorised to use Sercus, cannot already be logged on and must supply
the correct password.

create_initial_display

F-USER_STRTE
create_yindou‘ .
asic_op

initial_display : DISPLAY

initial_display ¢ ran my_display
initial_display.windows = { new_wid }
initial_display.programs = {}

Users 36

T e v e ,v_/

- 109—' nbas ic_op

OUSER_STATE

uid? : UID
password? : PRSSWORD

create_initial_display

uid? ¢ logged_in (1)
which_user(uid?).password = password? (2)
which_user(uid? J.clearance 2 author ised (3)
which_window' = which_window U { new_wid ~ empty_window
my_display' = my_display U { uid? » initial_display } (4)
logged_in’' = logged_in U { uid? } (5)
which_user’ = which_user

(1) The user is not already logged an.

(283) The supplied password must be correct,

authorised to use the system.

and th2 user must be

(4) The display for this user consists of a new window which F3s no
capabilities available to1t. No other displays are altered.

(5) This user is now added to the set of logged on users. No other
users., nor any passwords or clearances are affected.

?.3.3 log out

In order to log out, users must obviously be logged in. The user dentifier anc

display are simply removed from the logged_in set.

__lcg_out

basac_op

OQUSER_STATE
urd? @ UID

uid? € logged_in

which_user’ hich_user

logged_in’ = logged_in \ { uid? }

my_display’ = { uid? } € my_display
= W

-~ —_—-
w N
NN

(1) The users display is deleted.

(2) No passwords, clearances or cupboards are affected.

(3) The user is removed from the logged_in set.

?7.3.4 change clearance

Users may have their clearances reviewed by the security officer. for

37

Users

SRR A T — ——

simplicity of implementation. clearances may only be changed when users are
not logged on.

__change_clearance

basic_op]
OUSER_STATE
uid? : UID
clearance? : CLRSS
user! : USER
uid? € dom which_user
uid? ¢ logged_in (1)
user'!.clearance = clearance? (2)

user!.password = which_user(uid?).password
user !.cupboard = which_user(uid?).cupboard

which_user’ = which_user e { uid? » user! } (3)
my_display’ = my_display
logged_in’' = logged_in

J

(1) Users clearances can only be changed when they are logged out.
(2) Only the particular users clearance is changed.
(3) No other users are affected.

7.3.5 change password

Users may alter their password.

__change_password

basic_op v

AUSER_STATE

uid? : UID
password? : PASSWORD
user! : USER

uid? € dom which_user
uid? € logged_in (1)

user!.password = password? (2)
user !.clearance = which_user(uid?).clearance
user!.cupboard = which_user(uid?).cupboard

which_user’ = which_user e { uid? » user! } (3)
my_display’' = my_display
logged_in' = logged_in

(1) Users must be logged in to change their password.
(2) Only the user’s password is changed.

(3) No other users are affected.

Users 38

‘fj““” I |

——

B. Messages

8.1 Introduction

mn

Sercus wWill allow simple mail messages to be sent to users. These messacze
wll be used by the users to reguest operations from the registry clerks c-
security of ficer and possibly also to send documents and files to other vsers.

8.2 About Messages

A message contains capabilities and an indication of which user sent the mescszce
and when. The textual part of a message is uminteresting as far as tns
specification is concerned.

MESSAGE
message : P CAPARBILITY

from : UID
time : TIME

message © trusted_caps (1)

(1) Messages may only contain capabilities for trusted objects, scch as
documents and files.

Note that untrusted capablities could be sent if the objects were
copied first. However for the purposes of Sercus, messages as
specified should be sufficient.

8.3 Mal

The mail system in Sercus relates messages to the recipient.

MARIL
lrmail : MESSAGE + UID

—

>

AMRIL & [MAIL® ; MAIL]

]

EMAIL a [AMAIL | eMAIL' = sMAIL)

8.4 Mail Operations

Sending a8 message involves supplying some capabilities, and the asppropriats
user identifiers. Both trusted and untrusted capabilities will be used to create
a message, the contents of the untrusted ones making up the unsreci¥ied
textual part of the message.

39 Messazes

~————— Yy .

__send

basic_op —

AMAIL

caps? : P CAPABILITY
me?, to? : UID

message! : MESSAGE

message! ¢ dom mail
message ! .message = caps? N trusted_caps (1)

message!.from = me?
message!.time = time_now
mail’ = mail U { message! » to7 } (2)

J

(1) A new message is created which contains only those capabilities
which are trusted.

(2) This message is added to the mail system. No other messages are
affected.

This operation opens the next message for the particular user. Opening a3
message simply makes the capabilities avatlable.

open_next_message

basic_op -
AMAIL
message? : MESSAGE
me? : UID

caps! : P CAPABILITY

maill message?) = me? (1)

Um: dom (mail 0 { me? }) | m x message? .
message?.time € m.time (2)

caps! = message?.message

mail’ = { message? } 4 mail (3)

(1) Messages may only be opened by the user they are destined for.
(2) Messages are opened in the order in which they were sent.

In order to avoid the difficulties of two messages being sent at the
same time, it is assumed that either time is defined with sufficient
granularity to prevent this, or that the mailing system software
will randomly choose between messages with identical times. Since
the '<' operator is not fully specified it could do this random
choasing.

(3) The opened message is removed from the mail system.

Messages 40

AAERL L el et odi dntutafin, ot

_— ——— ey

- — —— o
— e — ~

9. Journalling

[EVENT_TYPE)

Security critical operations are recorded in a journal. This is a sequence 17
events, which are taken from the given set. together with the identity of the
user who caused the event to occur and when 1t happened.

EVENT

event : EVENT_TYPE
caused_by : UID
time : TIME

J

The types of event journalled can be partioned into three.

document_events, file_events., user_events : P EVENT_TYPE

{ document_events, file_events, user_events)
partition EVENT_TYPE

The possible journalled events are:

document _created, document_opened, document_regraded.
file_created, file_regraded.
user _created, clearance_changed, : EVENT_TYPE

document _events =
{ document _created. document_opened.document_regraded }

file_events = { file_created, file_regraded }

user _events = { user_created, clearance_changed }

A journal is an ordered sequence of events.

F_JOURNQL
journal : seq EVENT

U i, j : dom journal | i < j «
journal(i J.time € journall j J.time (1)

(1) The journal is ordered on time.

Operations can add an entry to a journal, but never remove or replace ex:sting
entries.

__ AJOURNAL ‘
JOURNAL'’
JOURNAL
#journal’ = #journal A journal’ = journal
\"2
#journal’ > ®journal A front(journal')} = journal

)

ZJOURNAL & [AJOURNAL | eJOURNAL' = 8JOURNAL]

41 Journalling

oy

8.1 Journalling the Filing System

All the documents and files in Sercus will have a journal associated with them.
although this cannot be insisted upon until part 2.

__ JOURNAL _DOCS
document_journal : CAPABILITY »» JOURNAL (1)

dom document_journal ¢ caps_for_docs

YU j : ran document_journal .
{e: ran j.journal « e.event } € document_gvents
#j.journal 2 1
j.journal(1).event = document_created

—_~——
LwnN
—

J

The document_journal function maps the document capabilities to their journals.
The domain of this function will be all the capabilities for documents so far
created.

(1) The relationship between documents and journals is a function so
that each document has a single journal associated with it. The
function is one toc one because each document has a unique journal,
and partial because not all the possible documents have yet been
created.

(2) Only document type events can be in a document journal.

({384) There must be at least one event in any document journal, and the
first event will be its creation.

AJOURNAL_DOCS a [JOURNAL_DOCS'® : JOURNAL_DOCS 1
SJOURNAL_DOCS & [AJOURNAL _DOCS | 8JOURNAL_DOCS' = eJOURNAL_DOCS 1
Similarly for files:

__ JOURNAL_FILES
file_journal : CAPABILITY »» JOURNAL

dom file_journal ¢ caps_for_files

U j: ran file_journal .
{e: ran j.journal « e.event } c file_events
#j.journal 2 1
j-journal(1).event = file_created

S— |

»

QJOURNAL _FILES & [JOURNAL_FILES' ; JOURNAL_FILES)

ZJOURNAL_FILES & [AJDURNAL_FILES
| 8JOURNAL_FILES’ = 8JOURNAL_FILES 1

Adding to a document or file journal will always involve a capability ta a
document or file as appropriate, a user identifier and an event type.

Journalling 42

document _op

Journalled !

—

AJOURNAL _DOCS
AJOURNAL {this defines how the journal is changed}

doc_cap? : CAPABILITY
event? : EVENT_TYPE
caused_by? : UID

document_journall doc_cap®) = e8JOURNAL (1)
document _journal’ = document_journal e { doc_cap? ~ 8JOURNAL' 2
journal’ = journal ~ ([EVENT | event = event? (2)

caused_by = caused_by”
time = time_now

(1) Only the particular journal is changed.

(2) A new entry is added to the particular journal with the supplied
event and user identifier. The time is set to be the current time.

Similarly for adding to a file journal:

-{Ile—DpJournAH!d -
AJOURNARL_FILES
OJOURNAL

file_cep? : CAPABILITY
event? : EVENT_TYPE
caused_by? : UID

file_journal(file_cap?) = gJOURNAL
file_journal’ = file_journal & { f:le_cap? ~ 8JOURNAL' 2

Journal’ = journal =~ ([EVENT | event = event?
caused_by = caused_by”?
time = time_now 1)

J

Whenever files and documents are created a new Journal will be created and
added to the appropriate journalling function.

r_create_document_op

Journalled

AJBURNAL _DOCS

new_cap? : CAPABILITY
caused_by? : UID

journal! : JOURNAL

Journal'! ¢ ran document_journal (1)
document _journal' = document_journal U { new_cap? ~ journal! }
journal! = [([EVENT | event = document_created (2)
caused_by = caused_by?
time = time_now 1)]

(1) A new journal is created and added to the document Journal
function. No other journals are affected.

43 Journall ing

e — — ~v— w

L Y A

e

e

v

(2) The new journal —contains a single event. This is a
'document_created’ event, with the supplied user identifier and
current time.

Similarly for files:

r_create_file_op

Journalled -

AJOURNAL _FILES

new_cap? : CAPABILITY
caused_by? : UID

journal! : JOURNAL

journal! ¢ ran file_journal
file_journal' = file_journal U { new_cap? » journal! }

journal! = [([EVENT | event = file_created
caused_by = caused_by?
time = time_now 1))

9.2 Journalling the Users

There is a journal associated with each user identifier. The journal for users
Wwill record creation and changes in clearances and the user identifier of the
user who performed the change. Logging in and out and changing passwords are
not journalled in this example system, as it will not demonstrate anything new.

__ JOURNAL _USERS

user _journal : UID »» JOURNAL (1
Y j : ran user_journal .
{e: ran j.journal . e.event } ¢ user_events (2)
#j.journal 2 1 (3)
j-Jjournal(1).event = user_created (4)

(1) The relationship between users and journals is a one to one function
because users have a single unique journal associated with them,
and partial because not all the possible users have yet been
created.

(2) Only user type events can be in a user journal.

(384) There must be at least one event in any user journal. and the first
event will be creation of the user.

AJOURNAL _USERS 2 [JOURNAL _USERS' ; JOURNAL_USERS 1

SJOURNAL _USERS 2 [AJOURNAL_USERS
| 8JOURNAL_USERS®' = eJOURNAL_USERS)

Journalling 44

- p—— -y — o -y W - T M)

As for documents and files user operations wll add to the Journal.

- USEF_OPJ.“" nalled

O0JOURNAL _USERS
O JOURNAL

\ ceer? : UID
i caused_hy? : UID
event? : EVENT_TYPE

——

nN—

’ user _journal(user?) = 8JOURNAL

user _journal’' = user_journal e { user? ~ 8JOURNAL' }
journal’ = journal = ([EVENT | event = event?
caused_by = caused_by”
time = time_now 1)

(1) This is the user that the operation is performed on.

i A

! (2) This gives the identifier of the user who performed the operston.
}
i As for documents and files, whenever a new user 15 created a new Journal will
L be added to the journalling function.
- create_user_opjwr"‘“'d .
8JOURNAL _USERS
new_user?, caused_by? : UID
! journal! : JOURNAL
journal! & ran user_journsal
user _journal’ = user_journal U { new_user? ~ journal' }
journal! = [([EVENT | event = user_created
b caused_by = caused_by?
time = time_now 1)
-)
45 Journalling

l R . P -t ke B e

T S — ————— ————y ———— o~ w— "/

Part 2

The previous sections described the various components of Sercus
independently, ie the documents and files, displays. cupboards., users.
messages and journals. The remainder of the document defines how these bas -
operations are performed by the users and initiated from one of the windows in
their display. Further constraints will be added to the basic operations as the
system is built up.

Trusted capabilities are those that refer to files and documents.

caps_for_docs U caps_for_files = trusted_caps
caps_for_anon = untrusted_caps

46

10. The Journalled Filing System

Many of the filing system operations described earlier (section 3.6} will result
in a journal entry being added to the appropriate journal. To this end the
journalled filing system is defined, and all the basic operations will be
performed on this system rather than the filing system zlone.

__ JOURNALLED_FILING_SYSTEM

FILING_SYSTEM
JOURNAL _DOCS
JOURNAL _FILES

dom document_jocurnal = dom which_doc (
dom file_journal = dom which_file (

(1221 All the documents and files in Sercus have a journal associated with
them.

AJOURNALLED_FILING_SYSTEM & [JOURNALLED_FILING_SYSTEM';
JOURNALLED_FILING_SYSTEN]

ZJOURNALLED_FILING_SYSTEM e [AJOURNALLED_FILING_SYSTEM:
| 8JOURNALLED_FILING_SYSTEM’
] = 9JOURNALLED_FILING_SYSTEM

The following schemas define all the basic filing system operations tc take
place on the journalled system. These operations will either invelve no change
to any journmals, or will simply add an event describing the operation to the
appropriate journal.

create_document journalled 8
create_document, . » create_document 0P,

A SJOURNAL_FILES

create_?nleim"n.u.d

create_file

» create_file_op. JOURNAL _DACS

basic_op journalled N~

regrade_file.

—regrade_document journalled ——————

journalled =™ r
OJOURNALLED_FILING_SYSTEM AJOURNALLED _FILING_SYSTEM
ZJOURNAL _FILES =JOURNAL _DOCS

document_opj ournalled

regrade_document

file_op.

journalled

regrade_file

basic_op basic_op

event? = document_regraded event? = file_regraded

Journalled Filing System 47

B
M

read_document .y ——

—

O JOURNALLED_FILING_SYSTEM
ZJOURNAL _FILES

c!tac:ument_t:;::l‘mn“1.d

reac:_document“s re_op

event? = document_opened

J

The following filing system operationc do not result in any jounzl.ec
information:

regrade_file_title & regarde_file_t |tle““c_op

A SJOURNARLLED_FILING_SYSTEM

Journalled

Regrading the classification of the title of a file is not Journalled
only because 1t does not demonstrate anything new. It 3 large-
system all changes ot classifi-=*.cn would be journalled.

add_doc_to_file.

a
journalled = de_dDC_tD_‘F ! lebas ic_oPp

A SJOURNALLED_FILING_SYSTEM

Adding a document to a file is not journalled because all accesses
to each document will still be contirolled and journalled as for
unfiled documents.

list_cdr. A EJOURNALLED_FILING_SYSTEM

a
journalled = IISt-Cdr

basic_op

find_document & find_document,
basic_op

A EJOURNALLED_FILING_SYSTEM

journalled

find_filed_document e find_filed document =

A EJOURNALLED_FILING_SYSTEM

Journalled

file_contents

a)
journalled = fi lE__Can.En‘tSb“ ic_0p

A SJOURNALLED_FILING_SYSTEM
The act of aquring s capability for an object i1s not journalled
because having the capability does not automatically allow

operations to take place. All the relevant actions will be
journalled separately.

48 Journalled Filing Syster

——

E__—-ev—v—""*_""—

11. Journalling Users

Many of the operations performed upon the users of Sercus., such as changing
clearances, need to be journalled. To this end the journalled user state s
defined. The user operations defined in section 7.3 will be performed in this
system rather than the basic one.

__ JOURNALLED_USER_STATE

USER_STATE
JOURNAL _USERS

dom user_journal = dom which_user 11

-

(1) All the valid users have a journal associated with them.

OJOURNALLED_USER_STARTE

[JOURNALLED_USER_STRTE® :
: JOURNALLED _USER_STATE

SJOURNALLED_USER_STATE a [AJOURNALLED_USER_STATE
| 8JOURNALLED_USER_STATE’
= 8JOURNALLED_USER_STATE
]

»

For simplicity, only creating users and changing therr clearances will be
Jjournalled.

create_user [vuid? / new_user?]

a
journalled = create_user

basic_op

A create_user_op“u”‘““

change_clearancejWM.““ .

—
1
change clearancen”c_"[uid? / user?]

user__op“m_ nalled

event? = clearance_changed

These basic operations need to have the identifier of the particular
user renamed to be consistent with the names that the journalling
schemas use.

los‘iniournnllcd & los—inbuie_w A EJDURNRL‘USERS

log_out . 2 log_out A =JOURNAL _USERS

journalled basic_op

change_password. & change_password ~ SJOURNAL _USERS

journalled bagsic_op

Journalling Users 49

- — —— ~———y P v - \A,V,i't/)

12. Promoting the Operations Involving Capabilities

Operations in Sercus wWill be performed by the users. or software running cn
their behalf, from ane of the windows of their display. The filing syste~,
cupboard and mail nperations may alter the set of capabilities avallable to the
wirdow, but will not create or destroy windows and programs. The fcllowns
schema defines this situation.

o

"—Aopcanbxlns Y
ODISPLAY {this defines how the display alters}
Wwindaow_id? : WID {this identifies the particuler window}
AWINDOW {this defines how the window alters}
AUNTRUSTED {this defines how untrusted software sltersl}
WwindoW_id? € windows (1)
BWINDOW = which_window(window_id? (29
which_window’' = which_window @ { window_id? ~ 8WINDOW' 2 (3)
windows®' = windows (4)
window_id? ¢ { p : programs «» p.monitoring } e (59
programs’ = programs

window_id? = monitoring e (B)
programs’ = programs \ { 8UNTRUSTED }> u { 8UNTRUSTED' 2
monitoring’ = monitoring

—

(1-3) The window in question is one of those in the display, and it is this,
and only this, window that will be changed by the operation.

(4) No windows are created or destroyed in the display.

{5) If the window is not monitoring any untrusted software then none wll
be changed by the operation.

(B) If the window is monitoring untrusted software then it 1s this, and
only this, software that will be altered by the operation. The
Window continues to monitor the software.

Security critical operations, and some operations that need to be properlv
controlled to prevent untrusted software exploiting signalling channels (53,
must be performed on the trusted path. In a display those windows that are nc*
running untrusted software form the trusted path. These operations will not
alter any high water mark classifications or related groups of untrustec
capabilities.

TRUSTED_PATH

capability \
Aopcnnhilitu
EHIGH_WATER_MARKS (1)
window_id? ¢ { p : programs « p.monitoring } (2)

(1) Operations on the trusted path will not alter any high water marks
or related groups of untrusted capabilities.

56

- L AN - L SOREN s PRI SRS SO S

m A S o et v - T et

(2) Trusted path windows are only those that are not monitoring any
untrusted software.

Operations are performed by users in one of the windows of their display. The
password, clearance and cupboard will be unaltered by the filing system and
mar: operations. No other users will be directly affected by these operations
that a user can perform.

0P

— filing_sys temUSER_STATE n

ADPccnany

OJOURNALLED_USER_STATE
EJOURNAL _USERS

caused_by? : UID {this is the user performing the cperation}

my_display(caused_by?) = 8DISPLAY

my_display’ = my_display e { caused_by? ~ 8DISPLAY' } (13
which_user’ = which_user (2)
logged_in' = logged_in

(1) The display for the particular user will be altered by operations.
No other vsers displays will be changed.

(2) The password, clearance and cupboard remain the same.

Note that no journalling information about the users is added. This
is because each document and file maintains its own journal of
accesses and regrades.

Some of the operations in Sercus must be performed by specific users., such as
security officers or registry clerks.

550 2 [oI:]ph)irvp.n.utomUSER_STaTE
| which_user(caused_by? J).clearance 2 sso]

CLERK L d’Ophliﬂs_nn.tonUSEIﬂ_ST‘!TE

| which_user(caused_by?).clearance 2 clerk]

The operations upon the cupboard do not alter the display except by adding
capabilities to the window that the operation is performed from. These
operations are performed by a user, and will not alter the password or
clearance.

51

oP

f—'¢ cuPboardUSER_STATE m

ADPcanbxlxw

OUSER_STATE
AUSER
ACUPBOARRD {this defines how the cupboard changes}

caused_by? : UID

my_display(caused_by?) gDISPLAY
my_display' = my_display & { caused_by? ~ 8RISPLAY' } (1)

8USER

which_user (csused_by?)

which_user’ = which_user & { caused_by? = 8USER' } (Z)
cupboard = eCUPBOARD (3)
cupboard’ = gCUPBO-D"

password’ = password

clearance' = clearance

logged_in' = logged_in

—

(1) The display for the particular user will be altered by operations.
and no others.

(283) The cupboard is altered by the operation, but the password a~d
cleararce remain the same.

52

~—y

~——— Ty T - w -

13. The Operations upon the Filing System

13.1 Filing System Operations in a Display

The journalled filing system operations described in section 18 will be
performed in a particular window and display, and may alter the contents of the
window.

The only security critical operations on the filing system are regrading
documents and files. However. it would be inconvenient if Trojan Horses in
untrusted software created files or documents and added documents to files in
a random manner. In fact if other untrusted software cooperated., this could
form a significant signalling channel. To prevent this, these operations can
only be performed from the trusted path.

regrade_document ; 1 (ys sysren —

TRUSTED_PQTHt arability

regrade_document journalled

doc_cap? € available
8WINDOW’ = eWINDOW

PENPAN
N =
—

(1) This is the basic regrade operation. together with the constraint
that the document being regraded is available to the window.

(2) The window is unaltered by the operation.

__regrade_file regrade_file_title

TP_FILING_SYSTER ———"" TP_FILING_SYSTER —™

TRUSTED_PARTH
regrade_file

TRUSTED_PATH .
capability
regrade_file_title

capability

journalled Journalled

file_cap? € available

file_cap? € available (1)
(2) 8WINDDOW® = eWINDOW

BWINDOW' = sWINDDW

—~—

(1) This is the basic regrade operation. together with the constraint
that the file being regraded is availaktle to the window.

(2) The window is unaltered by the operation.

__create_file

TP_FILING_SYSTEN l

TRUSTED_PATH
create_fi leJ

capability

ournalled

doc_cap? € available (1)
available’ = available U new_cap! (2)

(1) This is the basic operation for creating files, together with the
constrant that the document capability is available to the window.

Filing System Operations 53

(2) After the operation the new capability is avalable to the window.

__add_doc_to_file

TP_FILING_SYSTENM al

TRUSTED_PQTHclnbthy
add_doc_to_file

Journalled

{ doc_cap?, file_cap? } ¢ available
BWINDDW® = eWINDOW

—_—
nN—
—_ —

J

(1) This is the basic aoperation, together with the constraint that both
the file and document capabtlities are available to the window.

(2) The window 15 Lnaltered by the operation.

Creating a document involves supplying both trusted and untrusted cacab:ilities.
The trusted capabilities will be for other documents and will make up the
capability contents of the new document. The untrusted capabilities will be for
pther objects which wWill go towards making up the textual contents of the
document. The only important part of the untrusted capabilities as far as this
specification 1s concerned 1s the high water mark classification.

__create_document

TP_FILING_SYSTEN 1

TRUSTED_PATH .
carpability

create_document .
iournalled

caps? : P CAPABILITY

caps? ¢ available

contents? = caps? N trusted_caps

classification? 2 LUB{ ¢ : caps? N untrusted_caps .
huwm_class which_group(c) } (3)

—_—
N
~— —

available’ = available U { new_cap! } (4)

(1) Rll the supplied capabilities are available to the window.

(2) The contents capabilities for the basic operation are the supplied
trusted capabilities.

(3) The classificstion given ta the document must dominate all the high
water mark classifications of the untrusted capabilities that go
towards the document contents.

(4) After the operation the new capability 1s available to the window.

Reading a document, looking up documents in the cdr or filelist and listing the
contents of a file do not have to be performed from the trusted path. althoush
they could be. These operations will make further capabilties available to the
window. Reading documents and listing the contents of a file will only be
permitted if the user is cleared to do so. However this cannot be described
until the section 13.2 when users have been further specified.

t4 Filing System Operatiors

e s . i anmi o SR

find_document

— FILING_SYSIEN ;
ADP:ANNIN!
EHIGH_WATER_MARKS (1)
find_ﬁOCUmenthr"‘“.d
Wwindow_id? = monitoring es (2)
using’ = using U { doc_cap! }
class’ = class
group’ = group
eWINDOW' = eWINDOW
Window_id? = monitoring s (3)
6UNTRUSTED’ = eUNTRUSTED
available’ = available U { doc_cap! }
__find_fi 1Ed—d°C“mentrxuna_svswsn ,
Aopcanbxlity
=ZHIGH_WATER_MARKS (1)
Find_filed_documentiwrn.“.d
Wwindow_id? = manitoring s (23
using' = using U { doc_cap! }
class’ = class
group’ = group
SWINDOW' = eWINDOW
window_id? # monitoring s (3)
8UNTRUSTED® = BUNTRUSTED
available’ = available U { doc_cap! }
—file_contents,, o svsren ;
ADPCAplbilify
EHIGH_WATER_MARKS (1)
+’i1e_t:on’ten'csjWM‘I“d
window_id? = monitoring e (2)
using' = using U caps'
class’ = class
group’ = group
eWINDOW' = sWINDDUW
window_id? # monitoring = (3)
8UNTRUSTED’ = 8UNTRUSTED
available' = available U caps!

(1) Capabilities for documents are trusted and therefore no high water
marks need be changed as a result of this operation.

(2) If the operation is performed from untrusted software., the
capabilities available to that software are simply increased by the
new capability (or capabilities). The monitoring window s
unaffected.

Filing System Operations 55

(3) If the operation was performed in a trusted path window the
available capabilities are simply increased by the new capab:lity
{or capabilities) and any untrusted software in the display s
unaffected.

__list_cdr

FILING_SYSTEN N
ADPtAvAhxlx(g
llSt-Cdr,jaurnallod
8DISPLAY' = aDISPLAY (1)
S

(1) Because windows and untrusted software are modelled by the set of
capablities available to them, listing the cdr does alter the
display.

Opening a document will reveal further (trusted) capabilities. There a-e nc
restrictions as to where this operatior can be performed as documents wil crly
be able to be read if the users clearance dominates the classificatior (ths
will be specified later after users have been introduced, see section 14).

Reading a document from trusted software simply makes the cc-tents
capabilities available to the window.

_read_document

TRUSTED_PARTH

40P

capabality

read_dor:ument“u”‘““

window_id? € { p : programs « p.monitoring 2} (1)
doc_cap? € available (2)
available' = available U contents! (3)

8UNTRUSTED' = @UNTRUSTED
8HIGH_WATER_MARKS' = eHIGH_WATER_MARKS

—

(182) The window is not running any untrusted software, and the document
capability 1s available to this window.

(3) The capabilities available to the window are simply increased by the
contents of the document. No untrusted scftware or high water
marks are affected.

Whenever a document is opened by untrusted software, the high water mark mas

have to be increased to take account of the classification of the centents. The
following diagrams illustrate this.

56 Filing System Operaticrs

- — b 2n | w - - T -
—Confidential-—
o PY @ _._,__.\ —» Confidential
S]
[Z e Secret document

Figure B8a: The state of a window running untrusted software before
opening a document.

Secret

Y ® 7

—» Secret

® /2 Document Contents

Figure 8b: After opening the document to reveal secret
information.

__read_document

UNTRUSTED T

aoP

capability

read_document“w"““

window_id? = monitoring 1)
doc_cap? € using (2)
using’ = using U contents! (3)
known’ = known (4)
group’ = group

class' = show hwm_class’(group)

hwm_class’ = hum_class e (5)

{ group » which_doc(doc_cap? J.classification

lub
huwm_class(group)

}
eWINDOW’ = eWINDOW

d

(122) The window is running the untrusted software, and the document
capability is available to the untrusted program.

(3) The capabilities available to the untrusted scftware are increased
by the contents of the document.

(4) No capabilities are added to the monitoring window.
(5) The high water mark for the untrusted software will be the least

upper bound of the initial classification and that for the document.

Filing System Operations Y4

. i o -
N——————-'——" i

The complete ocperation is specified to be either of the above:

a8
read_document_, Ing_systen 2 read_document . coen pary

| v
read_document ;eusrep

N 13.2 Filing System Operations Periormed by Users

| The filing system operations are performed by users in one of the wndows of
J their display., and do not alter cupboards., passwords or clearances. Certan of
these gperations must be performed by specific users.

. a
) resrade_dor:umentusn a resrade_documentw_rILING_SYSTEH A 550

- .

regrade_faleus“ s regrad\a_’r‘\lew_HLmG_s‘,STEr1 A 550

. - : .
» resrade_flle_tntleus“ 8 regrade_f'lle_tntleTp_HUNG—SYSTW A SS3
r
a
create;!ocumentusgn - r::r'e.a‘te_cicu:umentw_"_“_ms_svsTEH

) n oopnliu_sysumussn_srme
-
| create_file, ., & create_file,, . 16 sysrem A CLERK

add_doc_to_f! leussn & add_doc_to_file

TP_FILING_SYSTENM

A QOPh ling_sys temUSER_STATE

Find_documentus“ 2 find_document

FILING_SYSTER mDPh ling_systlemUSER_STATE

«F:nd_filed_documentus“ 2 find_filed_document
IN @OP

i filing _systemUSER_STATE

FILING_SYSTEMN

. . a1
f list_cdr ., & I'St—‘:d"rums_svsrsn A ¢0Phling_sustemUSER_STRTE

__read_document

' USER —_—
| mDPfilins_systomUSER-STATE
{
1 read——docume”tnLms_svsrsn
which_user(caused_by?).clearance 2
1 which_doc(doc_tap?).classification (1
4
{

(1) In order to read a document, the users clear-ance must dominate
the classification of the document.

=Y2] Filing System Dperations

m* ey

—_ T

-

__fi le_contentsus“

¢0Pﬁ ling_systemUSER_STATE

fi le__c:cmtents”l_ms_svSTEH

which_user (caused_by?).clearance 2 file.classification (1)
where
file : ran which_file | title = title?

'

(1) In order to list the contents of a file, the users clearance must
dominate the file classification.

Filing System Operations 89

S— —Y w - - T -
M~r— - R w
14. The Operations upon Cupboards
14.1 Cupboard Operations in a Display
The basic operations on a cupboard. see section 6.3, will be performed in &

display.

The actions of the find operation depend on whether the operation i1s invoked
from trusted or untrusted software and the trustworthiness of the particular
capability. There are four cases, which are illustrated and specified below.

UPBOARD —Trusted Path—
cne @ [) P
o s @_ > —— Restricted

three %
Secret &

Fiqure Sa: A trusted path window prior to looking up an untrusted
capability in the cupboard.

CUPBOARD —Trusted Path™]
3
one @ [e T
two @ Y o - — - Restricted
¢ S~
three 2% 4. e —
Secret TS :
72 — —— Secrct
S~

Figure Sb: Trusted gath window after adding an untrusted capability
from the cupboard.

find
utp

—
TRUSTED_PATH
find

untrusted

capability

which_group' = which_group U { cap! ~» new_sroup } (1)
hwm_class’ hwm_class U { new_group » class! }

available’
where

new_group : GROUP | new_group ¢ dom hwm_class

available U { cap! }

)

(1) A new related group object is created for this capability and given
the high water mark classification taken from the cupboard. The
new capability is made available tc the window. No untrusted
software or other windows are affected.

60 Cupbcard Operations

P ———————— ——— -y w T - T T

CUPBOARD, —Restricted—

one @ (]) i
twe @ T /_\--—b Restricted

three® PY

Secret

Figure 19a: The situation priior to untrusted software looking up an
untrusted capability in the cupbaoard.

LUPBOARD, (__Secret
) & o~
| / AN

two ==)_-> Secret
oY AN 7
B OIS LSS st e I |
e % (| ~—

(Seeret ® ;

Figure 18b: After adding an untrusted capability from the cupboard.

find -
r

A0P

capabality

find

untrusted

8WINDOW® = sWINDOW

using' = using U { cap!' } (1)
known’ = known
group’ = group
class’ = show hum_class'(group)
which_group’ = which_group U { cap! =~ sroup } (2)
hwm_class' = hwm_class @ { group » (hwmfpéass(group)

u

class!) %}

—

(1) The new capability is added to the set that the untrusted software
is using. The monitoring window is unaffected.

(2) The new capability is added to the related group for that software.,

and the high water mark is increased as appropriate. No other high
water marks or groups are affected.

Cupboard Operations b1

IE-----'-E!--gc-—--;~ —— — —y v . v e - _-:/

Whe~ever trusted capabilities are taken from the cupboard no high water ma--s
or related groups need be altered.

——Findttp 1
TRUSTED_PQTHc.nblh‘y
;lndtrusled
available' = available U { cap! 2} (1)

(1) The capability from the cupboard is made available to the window,
and no high water marks or untrusted software change.

_flnd‘

ADpcanb;lny
find

trusted

BHIGH_WATER_MARKS® = eHIGH_WATER_MARKS

using' = using U { cap! } (1)
known' = known

group’ = group

class’ = class

8WINDOW® = sWINDOUW

|

(1) The capability from the cupboard is added to those available to the
software. The monitoring wndow and high water marks are
unaffected.

The complete find operaticr- is gne of the four cases.

find a fmdutp v findt‘p v fmdu v {‘mdt

DISPLAY

It would be a signalling channel if untrusted software could store capabilities in
the cupboard, so this operation must be performed from the trusted path. No
untrusted software will be affected by storing capabilities, except in that the
capability can now be found by software with access to the same cupboard.

__ keep“

TRUSTED_PGTHc.p.sni!u

copy_anon (1)
keep

untrusted

original? € available N untrusted_caps (2)
cap? = copy!
class? = hum_class(which_group(original?)) (3)

6WINDOW® = eWINDDOW

(1) In order to remove the problem of the related sets (see section
§.2) whenever untrusted capabilities are stored, what is in fact
stored is a capability to a new object with a copy of the original’'s
contents.

B2 Cupboard Operaticrs

- (e w

(2) The capability being kept must be one of those available to the
wWindow .

(3) The classification that is kept with untrusted capabilities must be
correct.

_keep!

TRUSTED_PATH

kEEptrus ted

capabilitly

cap? € available N trusted_caps 1)
8WINDOW®' = sWINDOW

j— |

(1) The capability being kept must be one of those available to the
Window.

The complete operation is either case.

l<eepm$pl_‘W 2 keepu v keept

18. Cupboard Operations Performed by Users

The cupbuard operations will be performed by sny of the users of Sercus in one
of the windows of their display.

£ a i
Find sep @ Findyigoiar A S0P (o oarauser_state

a
keep cep & keepy o oy A O0P, oL iauser_sTate

Cupboard Operations 63

T v

15. The Operstions upon the Mail System

15.1 Mail Operations Performed in a Display

P =k

The mail operations will be performed in a window of a display. No high weste
marks or untrusted software are altered. In order to prevent uniruste
software using messages as a signalling channel, the message operations mus
be performed from the trusted path.

e+ (1.

_ send_messas;eDIsprY —_—

TRUSTED_PARTH

send
basaic _op

capabality

caps? £ svailable (1)
eWINDCW' = sWINDOW (29

J

(1) The capabilities making up the message must all be ava:latle to the
Window.

(2) The Window 15 not altered by the operation.

r_open_next_messaseolsmﬁv -

TRUSTED_PATH_, Luv 141y

open_next_message

bassic_op

avatleble’ = available U caps! (1)

J

(1) Opening a message will make its capabilities avalable to the window.
These capabilities are all trusted, and therefore no high water
marks or related aroups need change.

15.2 Mail Operations Performed by Users

The mail operations may be performed by any user of Sercus. As for the filing
system opperations, only the capabilities available to the display of the
particular user may alter. The password, clearance and cupboard cannot

change. ’

F_send_messageuuﬂ .
¢Ophling_sys!enUSER_STﬁTE
send_message

DISPLAY

me? = caused_by?
to? € dom which_user

—_—
N =
—

-

(1) The user identifier for the sender of the message wll be correct.

(2) Messages may only be sent to valid users.

64 Mail Operations

-

T P e s pastn i RS AR

__open_next -MeSS388 erp —

QOP“ ling_sys temUSER_STATE

open_next_messasems’m*

me? = caused_by? (1)

(1) A message may only be opened if the message is destined for the
owner of the window.

Mail Operations 65

16. Promoting the Operations Involving & Display

The operations that alter the windows and software in a display will alsc be
initiated from one of the windows in the display. The following schemas de‘:ne
this situation.

r‘aopdunlw nl

ODISPLAY

window_id? : WID
AWINDOW
OUNTRUSTED

window_i1d? € windows
BWINDOW = which_window(window_id?)
gWINDOW' = which_window’{ window_id?)

As for the O0P schema the particular display and window
capability

that the operation i1s performed from are defired. This schems does
not define how the untrusted software and wWindows are altered as
this 1s defined in the basic cperation schemas.

— TRUSTED_FATH

display al

80P,
isplay
ZHIGH_WATER_MARKS

window_i1d? € { p : programs « p.monitoring }

J

The operations upon a display are performed by a user. Users may only aiter
their own display, and no others. No passwords., clearances or cupboards wll
be affected by the operations upon the display.

[—QopdnphyUSER_STnTE 1

AOP

display
AJOURNALLED_USER_STARTE
ZJOURNAL _USERS

caused_by? : UID

my_display(caused_by?) = eDISPLAY

my_displey’ = my_display e { caused_by? ~» 8DISPLRY’ } (19
which_user' = which_user (2)
logged_in' = logged_in (3)

—d

(1) The display for the particular user will be altered by operations,
and no others.

(283) Operations upon the display do not alter the password, clearance
or cupboard of any users, nor the set of logged in users.

66

“‘7~ TN

—~—

17. The Operations upon the Display of a User

17.1 Display Operations performed from a Display

The operations on a display described in section 5.8 will be initiated from one of
the windows of a display. These schemas combine the basic operation with the
schema that defines operations to take place in a display, and ties the
cemponents together.

— Create_windoW, ¢p qy ——

TRUSTED_PATH, ..,

create_w! r1cicuh“c_Qp

empty_window = B8WINDCW’

—

__run_untrusted __complete_untrusted

DISPLAY ~——— DISPLRY ——™////™/™™™™ 1

TRUSTED_PATH 40P

display display

run_untrusted complete_untrusted

basic_op basic_op

window_id? = wid? (1) Windaw_t1d?

- prag?.maonitoring (1)
8UNTRUSTED" = prog! 8UNTRUSTED

prog?

W

give_to_untrusted take_from_untrusted

r plspPLAY —™

A0R ADP

display display
give_to_untrusted take_from_untrusted

OISPLAY =

basic_op basic_op

Wwindow_id? = wid? (1) Window_id? = wid? (1)
BUNTRUSTED = prog? BUNTRUSTED = prog?
BUNTRUSTED' = prog! BWINDOW' = window'

(1) This ties up the window performing the operations with the window
from the basic operation schema.

17.2 Display Operations performed by Users

Users may perform the operations to alter their display, such as creating
windows and running untrusted software. These operations are not restricted to
users with certain roles, however a user can only affect their own display.

give_to_untrusted 8 give_to_untrusted

USER pispLay N ‘bDPa.spxuussn_smTE

take_from_untrusted & take_from_untrusted

USER YA ¢0P

DISPLA displayUSER_STATE

create_window & create_window

0P

USER orspLay N displayUSER_STATE

run_untrusted & ryn_untrusted

USER pispLaY A d)DPdilpllyUSER_STGTE

o
complete_untrustedusm a complete_untrustedmspmy A mDdelpllyUSER_STQTE

Display Operations 67

W——-——!—'—'—-* — — vy — e v o T
t
N
b

18. The Operations upon Users

18.1 User Operations performed in a Display

With the exception of logging in, the operations on users will be requested fro~
one of the windows of a display. Rll these operations must be performed fre-
the trusted path. No capabilities are involved in these operations and herce
there will be no change to the capabilities avalable to the window.

create_user ., o, 2 create_user~ TRUSTED_PQTHJHMH
A ZWINDOW
change_password, ¢, o, 2 thange_password A TRUSTED_PATH

Journalled

A EWINDIW

disfFlay

a8
change_clear BNCBy,gp oy 2 change_clearance" ourmalled

A~ TRUSTED_PATH A ZWINDOW

display

log outy gpiay 2 los_outww““ed A TRUSTED_PARTH A ZWINDOW

display

18.2 Orperations upon Users performed by the Users

-

The operations on the users of Sercus will be performed by the users inone ¢

the windows of ther display. Cresting users and changng clea-ances must be
performed by a system security officer.

s a +
create_user ... & create_use ;. A SS0

a
chahse_t:learam:euSER 8 change_clearancemspmy A 550
r_los_outusu - — change_password g,
QOPnsnuussn_smrs ¢DpdxsblauUSER_STﬁTE
los_outmspmv change_password; o, 4y
uid? = caused_by” (1) uid? = caused_by”? (1)
pu)

)

(1) Users may only change their own password and log ttemselves out.

Note that logging in is not specified as unlike all the other

operations, it 1s not performed by a logged in user in one of the
Wwindows of ther display.

68

User Cpera*tizc-s

-

PINDUIINNDNNNSRRRSSSINT S

~— - - -

19. Sercus - the Complete System

The complete system for Sercus is the journalled filing system, journalled
users, the mail system and anonymous objects, together with constraints to tie
them together. This section puts all the components specified in the preceeding
sections together, and defines the operations to take place in this state.

r__SERCUS \
JOURNALLED_FILING_SYSTEM
THE _ANDONS
JOURNALLED_USER_STATE
MAIL
Y u : ran which_user .« (11

ran(u.~upboard.name) € exist
{ w: which_windowl u.Wwindows) « w.available } € exist
{p: u.programs » p.using } 2 exist
where
exist = dom which_dac U dom which_file U dom which_anon

{m: ran mail « m.message } ¢ dom which_doc (23
ran mail © dom which_user (3)
{m: dom mail « m.from > ¢ dom which_user (4)

(1) All the trusted capabilities in the cupboards, windows and sof tware
must be for existing documents and files, and untrusted
capabilities must be for existing anonymous objects.

(2) Messages can only contain capabilities for existing documents.

(3) Messages may only be sent to legal users.

(4) Only legal users may send messages.

b

ASERCUS a [SERCUS' ; SERCUS 1
ESERCUS & [ASERCUS | 8SERCUS’ = €SERCUS 1

(1]

19.1 Initial State

The initial state of Sercus is a single user., who will be a system security
officer. There will hence be a single journal on the user state. There wll be no
documents or files, and consequently no journals for other objects., no mail
messages or anyone logged_in.

The Complete System 69

M T

. __ INITIAL_STATE .
' ASERCUS
! which_doc’ = {}

which_file’ = {}

which_anon’ = {2}

mail’ = {}

logged_in' = {2}

dam which_user’ =1

8 u : ran which_user' « u.cupboard = {}
u.clearance 2 sso

8 journal_users’ =1

dom journal_users dom which_user’

19.2 Operations on the Complete State

Filing system operations:

regrade_dccument & regrade_document SMAIL A EZTHE_ANING

user "

regrade _file & regrade_file A =MRIL A ETHE_ANONS

USER

regrade_file_title & regrade_file_title IMAIL A ETHE_ANONS

é user N

create_document 2 create_ﬁocumentUSER A =MAIL A ZTHE_ANONS

creste_file 2 create_file .. A EMAIL A ETHE_ANDNS

» add_doc_to_file & add_doc_to_file EMARIL A ZTHE_ANONS

yser N

find_document 2 find_document EMAIL A ZTHE_ANCNS

user "

find_filed_document & find_filed_document .. ~ EMAIL A ETHE_ANDONS

USE

list_cdr 2 lxst~cdrm.r A =SERCUS

file_contents & file_cantents =MRIL A ZTHE_ANCNS

user N

ZMAIL A ZTHE_ANCNS

f1}

read_document a read__documentuSER A

| find & find

A
4 USER

EMAIL A ZJDURNALLED_FILING_SYSTEM

keep 2 keep EMATL A ZJOURNALLED_FILING_SYSTEM

usgr N
Mail operations:
send_message & send_messase g, A ZTHE _ANDNS

~ ZJOURNALLED_FILING_SYSTEM

open_next_message & open_next_message ... A ZTHE_ANONS

A ZJOURNALLED_FILING_SYSTEM

Display operations:
create_window & create_mndowUSER A ZMAIL A ZTHE_ANONS

A SJDURNALLED_FILING_SYSTEM

70 The Complete Syste:

I

g.u-E-------!;--5-----— T v T T T)

b run_untrusted & run_untrusted .. A EMAIL A ETHE_ANONS
7 A SJOURNALLED_F ILING_SVSTEM

give_to_untrusted a give_to_untrusted g, A EMRIL A EZTHE_ANONS
A ZJOURNALLED_FILING_SYSTEM

take_from_untrusted a ’Lakea_\"rom_untrus’tedugt_:‘z A ZMAIL A ZTHE_ANONS
A ZJOURNALLED_FILING_SYSTEM

complete_untrusted a complete_untrustedus“ A ZMAIL A ZTHE_ANDNS
A ZJOURNALLED_FILING_SYSTEM

User operations:

create_user a create_user .. an EMAIL A EJOURNALLED_FILING_SYSTEM

A ETHE_ANONS

usen A EMAIL A EJOURNALLED_FILING_SYSTEM
A ETHE_ANONS

log_out 2 log_out

change_clearance a t:hanse__t:learam:eUSER A ZMAIL A ZTHE_ANONS
A EJOURNALLED_FILING_SYSTEM

user A EMAIL A ETHE_ANONS
A ZJOURNALLED_FILING_SYSTEM

ourmailea A EMAIL A EJOURNALLED_FILING_SYSTEM
A ETHE_ANONS

change_password & change_password

log_in & log_in

Jo—

The Complete System 71

-
- - —— SR RN

Eahadinr & — —

—~—

-y —— w

28. Summary

This document has formally specified the requrements for an example secure
system. The first part described all the components that were reguired in the
final system and defined the simple operations upon these. The next par:
defined how these comporents were to be combined and showed how the
operations on the various compoents were related to the others. The
structuring of the specification makes it much easier to read and highlights the
dependencies and constraints it wWill be necessary to enforce in the
implementation. The actual set of operations that have been defined i1s farlv
limited. However. enough operations have been specified to provide a useatle
system and to illustrate all the important areas.

21. References

(11 A Secure Capability Computer
S R Wiseman
Procs. TFFE Symn. Security and Privacy., Oakland CR, ARpril 1986

(2] A Capability Approach to Multi-level Security
S R Wiseman
Procs. IFIP/Sec, Monaco., December 1386

[31] Protection and Security Mechanisms in the SMITE Capab'lity Compute~
S R Wiseman
RSRE Memorandum 4117

[4) The Z Notation: A Reference Manual
J M Spivey DOraft JMS-87-12a
PRG, Oxford University

(5] The Trusted Path between SMITE and the User

S R Wiseman, PF Terry, A W Wood, C L Harrold
Jo appear: IEEE Symp. Security and Privacy, Oakland CAR, April 1988

Thanks to Simon Wiseman, Peter Bottomley. Ruaridh Macdonald and Alf Smith for
their comments and suggestions.

2

-

T

DOCUMENT CONTROL SHEET

Overall security classification of sheet . UNCLASSIFIED

(A< far as possitle this sheet should contain only unclassified information. [f it is necescary tc encer
classified information, the box concerned must be marked to indicate the classification eg (K) (C) er (S})

1. DRIC Reference (if known)

2. Originator's Reference

Report 88002

3. Agency Reference 4. Report Secur:ty 441

pnclassifiggiylwa"'

5. Originator's Code (if
known)

77840C

6. Originator {Corporate Author) Name and Location

Roval Signals and Radar Establishment

St Andrews Road,

Malvern, Worcestershire WRii 3PS

S5a. Sponsoring Agency's
Code (if known)

Ea. Sronsoring Agency (Contract Authority) Name and Location

7. Title

FORMAL SPECIFICATION OF A SECURE DOCUMENT CONTROL SYSTEM FOR SMITE

7a. Title in Foreign Language (in tre case of translations)

7t. Presented at {for conference rapers)

Title, place and date of conference

B. Author 1 Surname, initials| 9{a) Author 2 9(b) Authors 3,4... 10. Date pc. ref
Harrold CL 1988.02 72
11. Contract Number 12. Period 13. Project 14, Other Reference

15. Distribution statement

Unlimited

Descriptore (or keywords)

continye on separate riece of raver |

Abstract

This Report formally describes the requirements for a demonstration of a secure
electronic registry control system (Sercus) to be implemented using the security
attributes of the SMITE secure capability computer.

SBi/48

